Hydrogen Generation Using a Photoinduced Electron-transport System with a Molecular Catalyst in Vesicles

Kentaro Watanabe, Shin-ya Takizawa, and Shigeru Murata* Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo,

Meguro-ku, Tokyo 153-8902

(Received December 15, 2010; CL-101063; E-mail: cmura@mail.ecc.u-tokyo.ac.jp)

We constructed a novel H_2 generation system mimicking natural photosynthesis, in which an electron is transported photochemically from ascorbate entrapped in the inner waterpool of vesicles to MV^{2+} dissolved in the outer aqueous solution and relayed to a Pt(II) complex embedded in the vesicle membrane that acts as a molecular catalyst.

Artificial molecular systems capable of converting light energy into chemical potential attract great interest relating to current energy and environmental problems.¹ Among these systems is a photochemical system for the generation of H₂ by reduction of water. Numerous studies have been done on photoinduced H₂ generation systems composed of a photosensitizer (usually $[Ru(bpy)_3]^{2+}$), methyl viologen (MV²⁺) as an electron mediator, a sacrificial electron donor such as triethanolamine (TEOA), and a colloidal metal catalyst.² Recently, photochemical H₂ generation systems using a Pt(II)- and Co(III)-based molecular catalyst in place of metal colloids have been reported.^{3,4} However, systems using sacrificial electron donors are of no significance from the viewpoint of light energy conversion and storage, because a large amount of chemical energy would be lost by an irreversible decomposition of oxidized donors. To construct photochemical systems for H₂ generation using electron donors capable of undergoing reversible redox cycles, a design to prevent charge recombination would be required.

Recently, we reported that pyrene derivatives embedded in phosphatidylcholine vesicle bilayers induced photochemically electron transport from ascorbate (Asc⁻) entrapped in the inner waterpool to MV²⁺ dissolved in the outer aqueous solution.⁵ Asc⁻ undergoes a reversible redox reaction with semidehydroascorbate (Asc[•]), which disproportionates to give dehydroascorbate and Asc^{-.6} The free-energy change for the total redox reaction of our electron-transport system is estimated to be +12.7 kcal mol^{-1.7} Thus, although this system cannot work using visible light, it appears to be one of the most faithful models of natural photosynthesis in that an electron is transferred with the aid of light energy between two reversible redox couples in the energetically uphill direction through lipid bilayer walls preventing charge recombination. Attempts to construct a photochemical system for H₂ generation by linking this system with a colloidal platinum catalyst gave unsatisfactory results, which were due to undesirable interaction between the vesicle membrane and the surfactants protecting the surface of platinum particles.8 After examination of various conditions to link the photoinduced electron-transport system with a catalytic H₂ generation reaction, we found that certain Pt(II) complexes served as efficient catalysts. In this paper, we report a novel photochemical H₂ generation system, which is made up by the

photoinduced electron-transport system using an electron donor capable of undergoing reversible redox cycles and a newly designed Pt(II)-based molecular catalyst embedded into the vesicle membrane.

On the basis of the fact that some mononuclear Pt(II) complexes bearing a *cis*-[PtCl₂(pyridine)₂] unit are active as catalysts for H₂ generation,³ we designed two types of novel Pt(II) complexes. The complex **1** has hydrophobic alkyl chains to increase solubility in vesicle membranes, while in the complex **2** photosensitizing pyrene moieties are connected with the catalytic unit, which would be expected to act as a single-component system for photochemical H₂ generation (Chart 1). Both complexes **1** and **2** were obtained by the reaction of the corresponding 2,2'-bipyridyl-4,4'-dicarboxylates with *cis*-[PtCl₂(DMSO)₂] in CHCl₃ as orange granules that melted at 183–184 and 241–242 °C, respectively, and showed satisfactory spectroscopic properties (Supporting Information, Figures S1 and S2).⁹

Vesicle solutions used for H₂ generation experiments using a photoinduced electron-transport system were prepared as follows: a mixture of complex 1 and 1-(hydroxymethyl)pyrene (PyCH₂OH) that acts as a photosensitizer or complex 2 alone was suspended with 1,2-dipalmitoyl-*sn*-glycero-3-phosphocholine (DPPC) in 1.0 M Tris-HCl buffer (pH 7.5) containing AscNa (1.0 M). The suspension was sonicated for 2 h at 60 °C and developed by chromatography on a Sephadex G-50 column with a buffer solution containing NaCl (1.0 M). To the solution $MVCl_2 \cdot 3H_2O$ was added to give a vesicle solution with MV^{2+} (10 mM) in an outer aqueous solution. Incorporation of the Pt(II) complex and PyCH₂OH into the vesicle solution was monitored by their characteristic UV absorptions with maxima at 440 and 345 nm, respectively.

A degassed solution (3.0 mL) of vesicles containing 1 (1.4 μ M) and PyCH₂OH (17.9 μ M) was irradiated with a 500-W xenon arc lamp through a cutoff filter (>350 nm), and the headspace of the cell (1.5 mL) was analyzed by GC equipped with a thermal conductivity detector and an activated carbon column. After an induction period of up to 30 min, H₂ was produced at a constant rate of 0.138 μ Lh⁻¹ (Figure S3).⁹

346

Figure 1. H₂ generation (circle) and MV⁺ formation (triangle) by irradiation (>350 nm, 2.0 h) of a solution (3.0 mL) of DPPC vesicles containing PyCH₂OH (ca. 20 μ M) in hydrophobic bilayers and AscNa in the inner waterpool (1.0 M): (a) Effect of the initial concentration of MV²⁺ dissolved in the outer aqueous phase ([1] \approx 5 μ M). (b) Effect of the initial concentration of 1 embedded in vesicle bilayers ([MV²⁺] = 10 mM).

Simultaneously, the reduction of MV^{2+} occurred to yield MV^{+} , which was readily identified by its characteristic dark-blue color. The induction period of the H₂ generation may be due to the fact that sufficient MV^{+*} is not yet accumulated to generate H₂. No significant consumption of PyCH₂OH was observed after irradiation for at least 2 h. The rate of H₂ evolution gradually decreased after continuous irradiation for 12 h, and the dark-blue color of MV^{+*} faded away. On the basis of the total volume of photogenerated H₂ (1.53 µL), the number of turnovers was calculated to be 30 relative to complex **1**.

In order to obtain conditions for efficient H₂ generation, the influence of the initial concentration of MV^{2+} and complex 1 was examined. As shown in Figure 1a, although a small amount of H_2 is detected in the absence of MV^{2+} , the electron-relay species MV^{2+} plays an important role in this H₂ generation system. However, the addition of MV^{2+} in high concentrations retards the H₂ generation, although the photoinduced electron transport across vesicle bilayers proceeds efficiently to yield large amounts of MV+*, indicating that the electron discharge from MV⁺ to complex 1 is not necessarily a rate-limiting step in the total sequence of the H₂ generation. Figure 1b depicts the effect of the concentration of 1 embedded in the vesicle membrane, which could be controlled in the vesicle preparation, on the efficiency of the H₂ generation and MV^{+•} formation at a given concentration of MV^{2+} . Although H₂ is not produced in the absence of 1, the addition of a small amount of 1 into the vesicle membrane results in effective H₂ generation, and the efficiency of the H₂ generation, as well as the MV^{+•} formation, decreases with an increase in the concentration of 1. This observation can be interpreted in terms of the quenching of the excited state of PyCH₂OH by 1, which retards the MV⁺ formation that is mainly initiated by the reductive quenching of the PyCH₂OH excited state by Asc⁻ in the inner waterpool.⁵

Figure 2 illustrates the proposed mechanism of the H_2 generation in this system. As discussed previously,⁵ the irradiation of PyCH₂OH embedded in the vesicle bilayers induces endoergic electron transport across vesicle bilayers from Asc⁻ in the inner waterpool to MV^{2+} in the outer aqueous solution to produce MV^{++} . It is supposed that H_2 is formed

Figure 2. Proposed mechanism for H_2 generation using a photoinduced electron-transport system and a Pt(II) complex in vesicles. S_i and S_o stand for the sensitizers (PyCH₂OH) located in the vesicle bilayer close to the inner waterpool and the outer aqueous solution, respectively, and PtL₂Cl₂ stands for the Pt(II) complex **1** embedded in the vesicle membrane.

by the reduction of H_2O catalyzed by the Pt(II) complex 1 embedded in the vesicle membrane using the electrons relayed to 1 by MV^+ .

In contrast to the successful H₂ generation using a PyCH₂OH-sensitized electron-transport system with complex 1 as a molecular catalyst, the complex bearing pyrene moieties 2 is found to be ineffective as a photocatalyst for H₂ generation in the vesicular system using Asc⁻ as an electron donor. Thus, irradiation of a vesicle solution containing 2 (5.5 μ M) prepared in an identical manner to that described above, except for using 2 instead of 1 and PyCH₂OH caused neither H₂ generation nor MV^{+•} formation. Based on the fact that the H₂ generation is retarded in high-concentration ranges of 1 embedded in the vesicle membrane (Figure 1b), the ineffectiveness of 2 is probably due to rapid intramolecular quenching of the excited state of the pyrene moieties by the Pt(II) complex. However, we found that the complex 2 serves as a photocatalyst for H_2 generation in the vesicular system using a sacrificial electron donor. To a buffer solution (1.0 M Tris-HCl, pH 7.5, 2.5 mL) of DPPC vesicles, in which 2 (4.4 μ M) was embedded in hydrophobic bilayers and AscNa was absent in the inner waterpool, was added MV^{2+} (5.0 mM) and TEOA (0.5 mL). Upon irradiation of the resulting vesicle solution (>350 nm), H₂ generation occurred, along with MV^{+*} formation. After irradiation for 10.5 h, the number of turnovers was estimated to be 51 relative to complex **2** (Figure S4).⁹

In conclusion, a novel H_2 generation system has been constructed using a photoinduced electron-transport system mimicking natural photosynthesis and the Pt(II) complex **1** acting as a molecular catalyst. Further studies on improving the efficiency of the system are now in progress in our laboratory.

References and Notes

- M. Calvin, Int. J. Energy Res. 1979, 3, 73; T. J. Meyer, Acc. Chem. Res. 1989, 22, 163; D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2001, 34, 40; D. Gust, T. A. Moore, A. L. Moore, in Artificial Photosynthesis: From Basic Biology to Industrial Application, ed. by A. F. Collings, C. Critchley, Wiley, Weinheim, 2005, pp. 187–210.
- M. Kirch, J.-M. Lehn, J.-P. Sauvage, *Helv. Chim. Acta* 1979, 62, 1345; J. Kiwi, M. Grätzel, *J. Am. Chem. Soc.* 1979, 101, 7214.
- 3 H. Ozawa, M. Haga, K. Sakai, J. Am. Chem. Soc. 2006, 128, 4926; H. Ozawa, Y. Yokoyama, M. Haga, K. Sakai, Dalton

Trans. **2007**, 1197; K. Sakai, H. Ozawa, *Coord. Chem. Rev.* **2007**, *251*, 2753.

- 4 P. Du, K. Knowles, R. Eisenberg, J. Am. Chem. Soc. 2008, 130, 12576; T. Lazarides, T. McCormick, P. Du, G. Luo, B. Lindley, R. Eisenberg, J. Am. Chem. Soc. 2009, 131, 9192.
- 5 A. Yoshida, A. Harada, T. Mizushima, S. Murata, *Chem. Lett.* 2003, 32, 68; T. Mizushima, A. Yoshida, A. Harada, Y. Yoneda, T. Minatani, S. Murata, *Org. Biomol. Chem.* 2006, 4, 4336; R. Sasaki, Y. Nako, S. Murata, *Tetrahedron* 2009, 65, 7364.
- 6 D. Njus, P. M. Kelley, *Biochim. Biophys. Acta, Bioenerg.* 1993, 1144, 235.
- 7 For the calculation of free-energy change for the total redox reaction, +0.09 and -0.46 V were emplyed for the redox potentials of Asc'/Asc⁻ (pH 7.0)⁶ and MV²⁺/MV⁺⁺ (vs. SCE), respectively: S. L. Murov, I. Carmichael, G. L. Hug, *Handbook of Photochemistry*, 2nd ed., Marcell Dekker, New York, **1993**.
- 8 K. Watanabe, S. Murata, Annual Meeting on Photochemistry 2008, Sakai, Osaka, Japan, September 11–13, **2008**, Abstr., No. 1P99.
- 9 Supporting Information is available electronically in the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/ index.html.